Finite Simple Groups with Narrow Prime Spectrum

نویسنده

  • ANDREI V. ZAVARNITSINE
چکیده

We find the nonabelian finite simple groups with order prime divisors not exceeding 1000. More generally, we determine the sets of nonabelian finite simple groups whose maximal order prime divisor is a fixed prime less than 1000. Our results are based on calculations in the computer algebra system GAP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph

Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...

متن کامل

Characterizations of the simple group $D_{n}(3)$ by prime graph and spectrum

We prove that $D_n(3)$, where $ngeq6$ is even, is uniquely determined by its prime graph. Also, if $G$ is a finite group with the same prime graph as $D_4(3)$, then $Gcong D_4(3), B_3(3), C_3(3)$ or $G/O_2(G)cong {rm Aut}({}^2B_2(8))$.

متن کامل

On some Frobenius groups with the same prime graph as the almost simple group ${ {bf PGL(2,49)}}$

The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ is unrecognizable by prime graph if there is a finite group $H$ with $Gamma(H)=Gamma(G)$, in while $Hnotcong G$. In this paper, we consider finite groups with the same prime gr...

متن کامل

2-quasirecognizability of the simple groups B_n(p) and C_n(p) by prime graph

Let G be a finite group and let $GK(G)$ be the prime graph of G. We assume that $n$ is an odd number. In this paper, we show that if $GK(G)=GK(B_n(p))$, where $ngeq 9$ and $pin {3,5,7}$, then G has a unique nonabelian composition factor isomorphic to $B_n(p)$ or $C_n(p)$ . As consequences of our result, $B_n(p)$ is quasirecognizable by its spectrum and also by a new proof, the ...

متن کامل

ON COMPOSITION FACTORS OF A GROUP WITH THE SAME PRIME GRAPH AS Ln(5)

The prime graph of a finite group $G$ is denoted by$ga(G)$. A nonabelian simple group $G$ is called quasirecognizable by primegraph, if for every finite group $H$, where $ga(H)=ga(G)$, thereexists a nonabelian composition factor of $H$ which is isomorphic to$G$. Until now, it is proved that some finite linear simple groups arequasirecognizable by prime graph, for instance, the linear groups $L_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008